INDEX

- Program 1: Create a pandas series from a dictionary of values and an ndarray. pg1
- Program 2: Given a Series, print all the elements that are above the 75th percentile pg2
- Program 3: Create a Data Frame quarterly sales where each row contains the item category, item name, and expenditure. Group the rows by the category, and pg3
- Program 4: Create a data frame based on ecommerce data and generate descriptive statistics (mean, median, mode, quartile, and variance). Pg4
- Program 5: Create a data frame for examination result and display row labels, column labels data types of each column and the dimensions pg5
- Program 6: Filter out rows based on different criteria such as duplicate rows. Pg6
- Program 7: Find the sum of each column, or find the column with the lowest mean. Pg7
- Program 8: Locate the 3 largest values in a data frame.pg8
- Program 9: Subtract the mean of a row from each element of the row in a Data Frame.pg9
- Program 10: . Replace all negative values in a data frame with a 0. pg10
- Program 11: Replace all missing values in a data frame with a 999.pg11
- Program 12: Importing and exporting data between pandas and CSV file pg12
- Program 13: Importing and exporting data between pandas and MySQL database pg13
- Program 14: Given the school result data, analyse the performance of the students on different parameters, e.g subject wise or class wise. Pg 15
- Program 15: For the Data frames created above, analyze and plot appropriate charts with title and legend. Pg16
- Program 16: Take data of your interest from an open source (e.g. data.gov.in), aggregate and summarize it. Then plot it using different plotting functions of the Matplotlib pg17
- Program 17: Create a student table with the student id, name, and marks as attributes where the student id is the primary key. Pg 19
- Program 18: Insert the details of a new student in the above table. Pg 19
- Program 19: . Delete the details of a particular student in the above table. Pg 19
- Program 20: Use the select command to get the details of the students with marks more than 80. Pg20
- Program 21: Create a new table (order ID, customer Name, and order Date) by joining two tables (order ID,
- customer ID, and order Date) and (customer ID, customer pg 20
- Program 22: . Create a foreign key in one of the two tables mentioned above pg 21
- Program 23: Find the min, max, sum, and average of the marks in a student marks table 21
- Program 24: Find the total number of customers from each country in the table (customer ID, customer Name, country) using group by. Pg
- Program 25:Create a new table (name, date of birth) by joining two tables (student id, name) and (student id, date of birth). Pg 22
- Program 26: Write a SQL query to order the (student ID, marks) table in descending order of the marks. Pg 22

Practical File-Informatics Practices (Class XII)

#1 Create a pandas series from a dictionary of values and an ndarray.

```
import pandas as pd
import numpy as np
s=pd.Series(np.array([1,3,4,7,8,8,9]))
print(s)
     1
2
     4
    7
     8
dtype: int32
# import the pandas lib as pd
import pandas as pd
# create a dictionary
dictionary = {'A' : 10, 'B' : 20, 'C' : 30}
# create a series
series = pd.Series(dictionary)
print(series)
    10
    20
    30
dtype: int64
```

#2. Given a Series, print all the elements that are above the 75th percentile.

```
import pandas as pd
import numpy as np
s=pd.Series(np.array([1,3,4,7,8,8,9]))
print(s)
res=s.quantile(q=0.75)
print()
print('75th Percentile of the series is:::')
print(res)
print()
print('The elements that are above the 75th percentile::')
print(s[s>res])
0
     1
1
     3
2
     4
     7
dtype: int32
75th Percentile of the series is:::
8.0
The elements that are above the 75th percentile::
dtype: int32
```

#3 Create a Data Frame quarterly sales where each row contains the item category, item name, and expenditure. Group the rows by the category, and

```
itemcat itemname expenditure
                       Ford
0
                                 7000000
               car
               Ac Hitachi
                                   50000
        Aircoller Symphony
                                   12000
3 Washing Machine
                         LG
                                   14000
Result after Filtering Dataframe
                expenditure
itemcat
Ac
                      50000
Aircoller
                      12000
Washing Machine
                      14000
car
                    7000000
```

#4. Create a data frame based on ecommerce data and generate descriptive statistics (mean, median, mode, quartile, and variance).

```
7.00
count
        18450.00
mean
       28543.61
std
min
          500.00
25%
      1575.00
50%
       2500.00
75%
       29000.00
        65000.00
max
Name: Price, dtype: float64
```

#5. Create a data frame for examination result and display row labels, column labels data types of each column and the dimensions

```
Class Pass-Percentage
0
      Ι
                   100.0
     Η
1
                   100.0
2
    III
                   100.0
3
     ΙV
                  100.0
4
                  100.0
     ٧
5
    VI
                  100.0
    VII
                  100.0
7 VIII
                   100.0
8
     ΙX
                   100.0
9
     Χ
                   98.6
10
     XΙ
                   100.0
                   99.0
11 XII
                  object
Class
Pass-Percentage
                  float64
dtype: object
shape of the dataframe is:::::
(12, 2)
```

#6. Filter out rows based on different criteria such as duplicate rows.

	Name	MarksinIP
0	Rohit	85
2	Deepak	92
3	Rohit	85
4	Deepak	92

#7. Find the sum of each column, or find the column with the lowest mean.

```
import pandas as pd
Profit={ 'TCS': { 'Qtr1':2500, 'Qtr2':2000, 'Qtr3':3000, 'Qtr4':2000},
        'WIPRO': {'Qtr1':2800,'Qtr2':2400,'Qtr3':3600,'Qtr4':2400},
        'L&T': { 'Qtr1':2100, 'Qtr2':5700, 'Qtr3':35000, 'Qtr4':2100}}
df=pd.DataFrame(Profit)
print(df)
print()
print('Column wise sum in datframe is :::')
print(df.sum(axis=0))
# Print mean value of each column
print()
print('Column wise mean value are:::::')
print(df.mean(axis=0))
# Returns Column with minimum mean value
print('Column with minimum mean value is:::::::')
df.mean(axis=0).idxmin()
       TCS WIPRO
                     L&T
Otr1 2500
            2800
                    2100
Otr2 2000
            2400
                    5700
Qtr3 3000
            3600 35000
Qtr4 2000
             2400
                    2100
Column wise sum in datframe is :::
TCS
          9500
WIPRO
         11200
L&T
         44900
dtype: int64
Column wise mean value are:::::::
TCS
          2375.0
WIPRO
          2800.0
L&T
         11225.0
dtype: float64
Column with minimum mean value is:::::::::
'TCS'
```

#8. Locate the 3 largest values in a data frame.

```
Name MarksinIP
4 Pankaj 98
5 Sohit 96
2 Deepak 92
```

#9. Subtract the mean of a row from each element of the row in a Data Frame.

```
TCS WIPRO
                L&T
Qtr1 2500
         2800
               2100
Qtr2 2000
         2400
               5700
Qtr3 3000
         3600 35000
Qtr4 2000
          2400
               2100
Mean of each row is:::::::
      2466.666667
Qtr1
      3366.666667
Qtr2
Otr3 13866.666667
0tr4
      2166.666667
dtype: float64
Dataframe after Subtracting mean value of each row from each element of that Row is :::
            TCS
                      WIPRO
                                   L&T
0tr1
       Qtr2 -1366.666667 -966.666667 2333.333333
Otr3 -10866.666667 -10266.666667 21133.333333
Otr4 -166.666667 233.333333 -66.666667
```

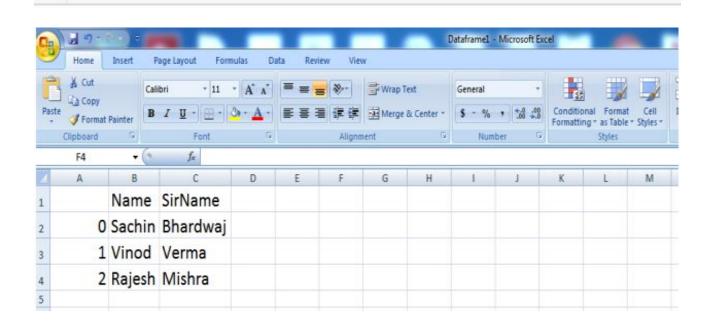
#10. Replace all negative values in a data frame with a 0.

```
import pandas as pd
dic={'Data1':[-5,-2,5,8,9,-6],
    'Data2':[2,4,10,15,-5,-8]}
df=pd.DataFrame(dic)
print(df)
print()
print("dataFrame after replacing negative values with 0:::")
df[df<0]=0
print(df)
  Data1 Data2
     -5
     -2
            4
      5 10
3
      8 15
      9 -5
     -6
           -8
dataFrame after replacing negative values with 0:::
  Data1 Data2
      0
0
            2
            4
1
      0
2
      5 10
3
      8 15
5
```

#11. Replace all missing values in a data frame with a 999.

```
import pandas as pd
import numpy as np
empdata={ 'empid':[101,102,103,104,105,106],
         'ename':['Sachin','Vinod','Lakhbir',np.nan,'Devinder','UmaSelvi'],
         'Doj':['12-01-2012','15-01-2012','05-09-2007','17-01- 2012',np.nan,'16-01-2012']}
df=pd.DataFrame(empdata)
print(df)
df=df.fillna({'ename':999,'Doj':999})
print()
print(df)
  empid
           ename
                         Doj
  101 Sachin 12-01-2012
    102 Vinod 15-01-2012
   103 Lakhbir 05-09-2007
2
    104
             NaN 17-01- 2012
    105 Devinder
                         NaN
    106 UmaSelvi 16-01-2012
  empid
                         Doj
          ename
  101 Sachin 12-01-2012
    102 Vinod 15-01-2012
2
   103 Lakhbir 05-09-2007
    104
             999 17-01- 2012
```

Act


105 Devinder

106 UmaSelvi 16-01-2012

999

#12. Importing and exporting data between pandas and CSV file

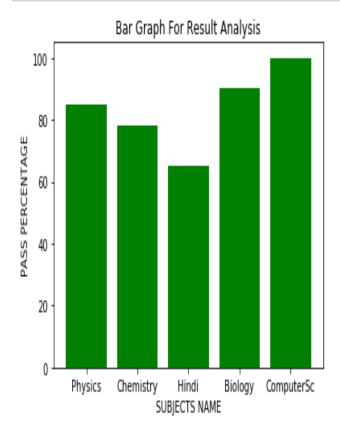
```
1 # importing pandas module
 2 import pandas as pd
 3 # making data frame
 4 df = pd.read_csv("E:\emp.csv")
 5 print(df)
 6
  empid
                   ename
                                  doj
   101 Sachin Bhardwaj 12-01-2012
1
             Vinod Verma 15-01-2012
    102
    103
            Anand Ganesh 05-09-2007
  import pandas as pd
2 1 = [{'Name': 'Sachin', 'SirName': 'Bhardwaj'},
       {'Name': 'Vinod', 'SirName': 'Verma'},
        { 'Name': 'Rajesh', 'SirName': 'Mishra'}]
```


5 df1=pd.DataFrame(1)

6 # saving the dataframe

7 df1.to_csv('E:\Dataframe1.csv')

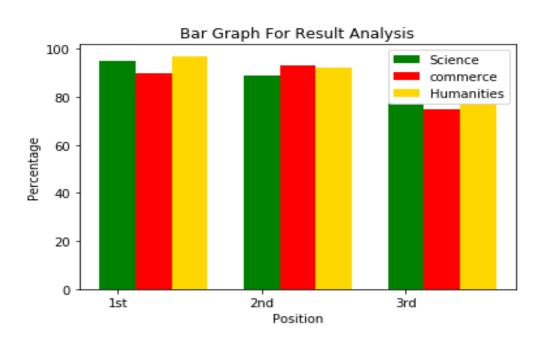
#13. Importing and exporting data between pandas and MySQL database.


Importing Data from MySQL to Data Frame.

Exporting data from Data Frame to MYSQL.

```
In [8]: import mysql.connector
        import pandas as pd
        con=mysql.connector.connect(host="localhost", user="root", passwd="root", database="sachin")
        print(con)
        c=con.cursor()
        print(df)
        c.execute("delete from employee")
        con.commit()
        for(row,rs) in df.iterrows():
            empid=str(int(rs[0]))
            ename=rs[1]
            Doj=(rs[2])
            c.execute("insert into employee values("+ empid +",'"+ ename +"','"+ Doj +"')")
        con.commit()
        c.close()
        empdata={ 'empid':[101,102,103,104,105,106],
                   'ename':['Sachin','Vinod','Lakhbir','Anil','Devinder','UmaSelvi'],
                   'Doj':['2012-01-12','2012-01-15','2007-09-05','2012-01-17','2007-09-05','2012-01-16'] }
        df=pd.DataFrame(empdata)
        print("Dta transfer Successfully")
```

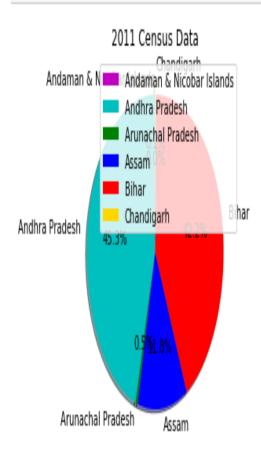
#14. Given the school result data, analyse the performance of the students on different parameters, e.g subject wise or class wise.


```
import matplotlib.pyplot as plt
Subject=['Physics','Chemistry','Hindi','Biology','ComputerSc']
Percentage=[85,78,65,90,100]
plt.bar(Subject,Percentage,align='center',color='green')
plt.xlabel('SUBJECTS NAME')
plt.ylabel('PASS PERCENTAGE')
plt.title('Bar Graph For Result Analysis')
plt.show()
```


A G

#15. For the Data frames created above, analyze and plot appropriate charts with title and legend.

```
import matplotlib.pyplot as plt
import numpy as np
s=['1st','2nd','3rd']
per sc=[95,89,77]
per com=[90,93,75]
per hum=[97,92,77]
x=np.arange(len(s))
plt.bar(x,per_sc,label='Science',width=0.25,color='green')
plt.bar(x+.25,per com,label='commerce',width=0.25,color='red')
plt.bar(x+.50,per_hum,label='Humanities',width=0.25,color='gold')
plt.xticks(x,s)
plt.xlabel('Position')
plt.ylabel('Percentage')
plt.title('Bar Graph For Result Analysis')
plt.legend()
plt.show()
```



#16. Take data of your interest from an open source (e.g. data.gov.in), aggregate and summarize it. Then plot it using different plotting functions of the Matplotlib

```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("E:\census.csv")
print(df)
```

	S.No.	State/UT	Total Population of other	
0	1	Andaman & Nicobar Islands	47	
1	2	Andhra Pradesh	43769	
2	3	Arunachal Pradesh	495	
3	4	Assam	11374	
4	5	Bihar	40827	
5	6	Chandigarh	142	
6	7	Chhattisgarh	6591	
7	8	Dadra & Nagar Haveli	43	
8	9	Daman & Diu	59	
9	10	Goa	398	
10	11	Gujarat	11544	
11	12	Haryana	8422	
12	13	Himachal Pradesh	2051	
13	14	Jammu & Kashmir	4137	
14	15	Jharkhand	13463	
15	16	Karnataka	20266	
16	17	Kerala	3902	
17	18	Lakshadweep	2	
18	19	Madhya Pradesh	29597	
19	20	Maharashtra	40891	
20	21	Manipur	1343	
21	22	Meghalaya	627	
22	23	Mizoram	166	
23	24	Nagaland	398	
24	25	NCT of Delhi	4213	
25	26	Odisha	20332	
26	27	Puducherry	252	
27	28	Punjab	10243	
28	29	Rajasthan	16517	
29	30	Sikkim	126	
30	31	Tamil Nadu	22364	
31	32	Tripura	833	
32	33	Uttar Pradesh	137465	
33	34	Uttarakhand	4555	
34	35	West Bengal	30349	
35	Total	Total	487803	

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("E:\census.csv")
slices=(df['Total Population of other'].head(6))
states=(df['State/UT'].head(6))
cols=['m','c','g','b','r','gold']
exp=[0,0,0,0,0,0.1]
plt.pie(slices, labels=states, colors=cols, startangle=90, explode=exp, shadow=True, autopct='%.1f%%')
plt.title('2011 Census Data')
plt.legend()
plt.show()
```


#17. Create a student table with the student id, name, and marks as attributes where the student id is the primary key.

```
1 create table student
2 (
3 student_id varchar(10) primary key not NOT NULL,
4 name varchar(30),
5 marks integer(5)
6 );
```

#18. Insert the details of a new student in the above table.

```
insert into student values( 101, 'Rohit',410);
insert into student values( 102, 'Mohit',425);
insert into student values(103, 'Rahul',475);
insert into student values(104, 'Virat',495);
```

#19. Delete the details of a particular student in the above table.

```
delete from student where name='Rahul';
select * from student;
```

```
101 Rohit 410
102 Mohit 425
104 Virat 495
```

#20. Use the select command to get the details of the students with marks more than 80.

select * from student WHERE marks>80;

#21. Create a new table (order ID, customer Name, and order Date) by joining two tables (order ID, customer ID, and order Date) and (customer ID, customer

mysql> select * from orders; | orderid | customerid | orderdate | | 1 | 1 | 2020-10-10 | | 2 | 1 | 2020-04-05 | | 3 | 2 | 2019-01-01 |

mysql> create table orderdetails as select orderid, customername, orderdate

-> from orders, customer where orders.customerid=customer.customerid;

mysql> select * from orderdetails; +-----+ | orderid | customername | orderdate | +-----+ | 1 | AMIT | 2020-10-10 | 2 | AMIT | 2020-04-05 | 3 | SUMIT | 2019-01-01 | +-----+

#22. Create a foreign key in one of the two tables mentioned above

mysql> alter table orders add foreign key(customerid) references customer(customerid); Query OK, 3 rows affected (1.22 sec)

#23. Find the min, max, sum, and average of the marks in a student marks table.

select Min(marks), Max(marks), Sum(marks), Avg(marks) from student;

410 495 1805 451.2500

#24. Find the total number of customers from each country in the table (customer ID, customer Name, country) using group by.

#25. Create a new table (name, date of birth) by joining two tables (student id, name) and (student id, date of birth).

```
mysql> select * from student;
  studentid | name
             1 | SACHIN
                 AMIT
2 rows in set (0.01 sec)
mysql> select * from studentbirth;
  studentid | dob
                  1982-06-17
             2 İ
                 1981-05-20
2 rows in set (0.00 sec)
mysql> create table stu2 as select name, dob from student, studentbirth
   -> where student.studentid=studentbirth.studentid;
Query OK, 2 rows affected (0.37 sec)
Records: 2 Duplicates: 0 Warnings: 0
mysql> select * from stu2;
 name dob
 SACHIN | 1982-06-17
| AMIT | 1981-05-20
2 rows in set (0.00 sec)
```

#26. Write a SQL query to order the (student ID, marks) table in descending order of the marks.

select student_id, marks from student order by marks desc;